Practice Set
1. Determine the values of \(a\), \(b\), and \(c\) for which the system is consistent:
\[
\begin{align*}
2x - y + 3z &= 5 \\
4x - ay + bz &= c \\
\end{align*}
\]
2. Find the general solution to the system:
\[
\begin{align*}
x + 2y - z &= 5 \\
2x + 4y + 2z &= 10 \\
3x + 6y + 3z &= 15
\end{align*}
\]
3. Solve the system and classify its consistency:
\[
\begin{align*}
x - y + 2z &= 4 \\
2x - y + 4z &= 8 \\
3x - 2y + 6z &= 12
\end{align*}
\]
4. Using Cramer's Rule, solve the system:
\[
\begin{align*}
3x - 2y + z &= 7 \\
6x - 4y + 2z &= 14 \\
9x - 6y + 3z &= 21
\end{align*}
\]
5. Find the values of \(k\) and \(m\) for which the system is inconsistent:
\[
\begin{align*}
x + y - z &= 5 \\
2x - y + kz &= 1 \\
3x + my - 2z &= 0
\end{align*}
\]
6. Solve the homogeneous system:
\[
\begin{align*}
2x - y + z &= 0 \\
4x - 2y + 2z &= 0 \\
6x - 3y + 3z &= 0
\end{align*}
\]
7. Interpret the geometric meaning of the solution, if any, for the system:
\[
\begin{align*}
x + 2y - z &= 5 \\
2x + 4y + 2z &= 10 \\
3x + 6y + 3z &= 15
\end{align*}
\]
8. Solve the system of equations:
\[
\begin{align*}
2x - y + 3z &= 7 \\
4x + 2y - z &= 10 \\
6x - 3y + kz &= 3
\end{align*}
\]
Is the system consistent?
0 Comments