Practice set third

 As we know that \(\sqrt{-1} = i\), where \(i\) is a special symbol first used by Euler 

                    From above we can conclude that \(\sqrt{-3} = \sqrt{3} i\)  and so on. We have \(i^2=-1\) , \(i^3 = -i\), \(i^4=1\), or you can just keep in mind that whenever power of \(i\) is of type \(4m\) ,\(4m+1\), \(4m+2\), \(4m+3\) , where  \(m\) is some integer ,then we have 

\(i^{4m} = 1\), \(i^{4m+1} = i\), \(i^{4m+2}= -1\)  and  \(i^{4m+3}=-i\). Lets try some practice questions.



Solve

1). \(i^8\)

2). \(i^4+1-2\)

3). \(i^{10}+i^{12}+i^{11}\)

4). \(2i^{100}-5i^{12}\)

5). \(100i^{101}-2i\)

6). \(8i^8-i^{100}+i^{13}+i^{30}\)

7). \(10i^{22}-10i^{300}-i^{88}\)

8). \((1+i^{32})^2\)

9). \((25+7i)(-3i^23\)

10). \(i^{22}-i^{400}+3i^{22}-82i^{85}\)


Answer

1) 1          2)  0         3) \(-i\)        4) -3        5)  \(98i\)       6)  \(6+i\)


7) -21      8)  4          9) \(-21+75i\)        10) \(-5-82i\)

Post a Comment

0 Comments