SOLUTION
\(\displaystyle \Rightarrow \sum_{n=1}^{100} \frac{1}{n(n+1)}\)
\(\displaystyle \Rightarrow a_{n}=\frac{1}{n(n+1)}\)
\(\displaystyle \frac{1}{n(n+1)}=\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
Taking \(\;\;\displaystyle \sum_{n=1}^{100} \;\;\) On both the sides.
\(\displaystyle \sum_{n=1}^{100} \frac{1}{n(n+1)}=\sum_{n=1}^{100} \frac{1}{n}-\sum_{n=1}^{100} \frac{1}{n+1}\)
Terms will cancel out and we will get
\(\displaystyle = 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{100}-\frac{1}{2}-\frac{1}{3}\cdots-\frac{1}{101}\)
\(\displaystyle = 1-\frac{1}{101}\)
\(\displaystyle = \frac{100}{101}\)
ANSWER : \(\displaystyle = \frac{100}{101}\)
\(\displaystyle \sum_{n=1}^{100} \frac{1}{n(n+1)}=\sum_{n=1}^{100} \frac{1}{n}-\sum_{n=1}^{100} \frac{1}{n+1}\)
Terms will cancel out and we will get
\(\displaystyle = 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{100}-\frac{1}{2}-\frac{1}{3}\cdots-\frac{1}{101}\)
\(\displaystyle = 1-\frac{1}{101}\)
\(\displaystyle = \frac{100}{101}\)
ANSWER : \(\displaystyle = \frac{100}{101}\)
0 Comments