SLOUTION :
Above Expression can be written as
\(\displaystyle \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{2 n^{2}-k}}\)
Using Sandwich theorem, we will get
\(\displaystyle \sum_{k=1}^{n} \frac{1}{\sqrt{2 n^{2}+n}} < \sum_{k=1}^{n} \frac{1}{\sqrt{2 n^{2}-k}} < \sum_{k=1}^{n} \frac{1}{\sqrt{2 n^{2}}}\)
\(\displaystyle \frac{n}{\sqrt{2 n^{2}+n}} < \sum_{k=1}^{n} \frac{1}{\sqrt{2 n^{2}-k}}<\frac{n}{\sqrt{2} \times n}\)
\(\displaystyle \lim _{n \rightarrow \infty} \frac{n}{n \sqrt{2+\frac{1}{n}}} < \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{2 n^{2}-k}}<\lim _{n \rightarrow \infty} \frac{1}{\sqrt{2}}\)
\(\displaystyle \frac{1}{\sqrt{2}}<\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{2 n^{2}-k}}<\frac{1}{\sqrt{2}}\)
ANSWER : \(\displaystyle \frac{1}{\sqrt{2}}\)
0 Comments