SOLUTION
\(\displaystyle S_{n}=\sum_{k=1}^{n} \displaystyle \frac{1}{\sqrt{4 n^{2}-k^{2}}}\)
\(\displaystyle \Rightarrow S_{n}=\sum_{k=1}^{n} \displaystyle \frac{1}{n \sqrt{2^{2}-\displaystyle \frac{k^{2}}{n^{2}}}}\)
Using Riemann sum Relationship to Definite Integral We will get
\(\displaystyle \Rightarrow \quad \int_{0}^{1} \frac{d x}{\sqrt{2^{2}-x^{2}}}\)
\(\displaystyle \Rightarrow\left|\sin ^{-1} \frac{x}{2}\right|_{0}^{1}\)
\(\displaystyle \Rightarrow \sin ^{-1}\left(\frac{1}{2}\right)\)
\(\displaystyle =\frac{\pi}{6}\)
ANSWER : \(\displaystyle =\frac{\pi}{6}\)
0 Comments