SOLUTION :
We can also write it as
\(\displaystyle \sum_{n=1}^{\infty} \frac{1+2+3+4+\cdots +n}{n!}\)
\(\text{Let}\;\; \displaystyle a_n =\frac{1+2+3+4+\cdots+n}{n!}\)
\(\displaystyle\Rightarrow \quad a_{n}=\displaystyle \frac{\frac{n}{2}[n+1]}{n !}\)
\(\displaystyle\Rightarrow a_{n}=\frac{n(n+1)}{2 n !}\)
\(\displaystyle\Rightarrow a_{n}=\frac{(n+1)}{2(n-1)!}\)
\(\displaystyle\Rightarrow a_{n}=\frac{n}{2(n-1) !}+\frac{1}{2(n-1)!}\)
Add and subtract 1 to numerator
\(\displaystyle\Rightarrow a_{n}=\frac{(n-1)+1}{2(n-1) !}+\frac{1}{2(n-1)!}\)
\(\displaystyle\Rightarrow a_{n}=\frac{1}{2(n-2)!}+\frac{1}{2(n-1) !}+\frac{1}{2(n-1)!}\)
Taking summition on both the sides \(\displaystyle \sum_{n=2}^{\infty}\)
\(\displaystyle\Rightarrow \sum_{n=2}^{\infty} a_{n}=\frac{1}{2} \sum_{n=2}^{\infty} \frac{1}{(n-2) !}+\sum_{n=2}^{\infty} \frac{1}{(n-1) !}\)
Adding \(a_{1}\) On both Sides
\(\displaystyle\Rightarrow a_{1}+\sum_{n=2}^{\infty} a_{n}=\frac{1}{2} \sum_{n=2}^{\infty} \frac{1}{(n-2) !}+\sum_{n=2}^{\infty} \frac{1}{(n-1) !}+a_{1}\;\;\cdots (1)\)
After this we know that \(\;\displaystyle a_{1}+\sum_{n=2}^{\infty} a_{n}=\sum_{n=1}^{\infty} a_{n}\)
And also we have \(a_1=1\) so using all these in (1) We get
\(\displaystyle\Rightarrow \sum_{n=1}^{\infty} a_{n}=\frac{1}{2}[e]+[e-1]+1\)
\(\displaystyle=\frac{1}{2} e+e=\frac{3 e}{2}\)
ANSWER \(\displaystyle \;\; \frac{3e}{2}\)
0 Comments