SOLUTION:
Add and subtract \(\displaystyle\;\; \sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}}\;\;\) we will get
\(\displaystyle \left(\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}+\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}}\right)-\sum_{n=1}^{\infty} \frac{1}{2 n^{2}}\)
\(\Rightarrow \displaystyle \left(\sum_{n=1}^{\infty}\left[\frac{1}{(2 n-1)^{2}}+\frac{1}{(2 n)^{2}}\right]\right)-\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}}\;\;\;\; \cdots (1)\)
We will use
\(\displaystyle \sum_{n=1}^{\infty}\frac{1}{(2 n-1)^{2}}+\frac{1}{(2 n)^{2}} = \sum_{n=1}^{\infty} \frac{1}{n^{2}}\)
in (1), then we will get
\(\displaystyle \left(1+\frac{1}{2^{2}}+\frac{1}{\left(3)^{2}\right.}+\frac{1}{(4)^{2}}+\cdots\right)-\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}}\)
\(\Rightarrow \displaystyle \sum_{n=1}^{\infty} \frac{1}{n^{2}}-\sum_{n=1}^{\infty} \frac{1}{4 n^{2}}\;\;\;\;\cdots (2)\)
We have a result that \(\displaystyle\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^2}{6}\)
we will use this in (2)
\(\displaystyle \frac{\pi^{2}}{6}-\frac{1}{4}\times \frac{\pi^2}{6} = \frac{\pi^{2}}{6}- \frac{\pi^2}{24}\)
After solving this we will get
\(\displaystyle \frac{\pi^2}{8}\)
ANSWER : \(\displaystyle \frac{\pi^2}{8}\)
0 Comments