Loading [MathJax]/jax/output/HTML-CSS/jax.js

Sum of series 2.



∞∑n=1n(12)n

SOLUTION : We have series represantation of (1−x)−n as

(1−x)−n=1+nx+n(n−1)2!x2+n(n−1)(n−2)3!x3+⋯

⇒(1−x)−2=1+2x+3x2+4x3+5x4+…

Replace x with 12 we will get

⇒(1−12)−2=1+2.12+3.122+4.123+5.124+⋯

⇒(1−12)−2=∞∑n=1n(12)n−1⋯(1)

        or we can write above as

(1−12)−2=2∞∑n=1n(12)n

Use this in 1

⇒∞∑n=1n(12)n=12(1−12)−2

⇒∞∑n=1n(12)n=12(12)−2

⇒∞∑n=1n(12)n=2

ANSWER : 2

Post a Comment

0 Comments