SOLUTION : We have series represantation of (1−x)−n as
(1−x)−n=1+nx+n(n−1)2!x2+n(n−1)(n−2)3!x3+⋯
⇒(1−x)−2=1+2x+3x2+4x3+5x4+…
Replace x with 12 we will get
⇒(1−12)−2=1+2.12+3.122+4.123+5.124+⋯
⇒(1−12)−2=∞∑n=1n(12)n−1⋯(1)
or we can write above as
(1−12)−2=2∞∑n=1n(12)n
Use this in 1
⇒∞∑n=1n(12)n=12(1−12)−2
⇒∞∑n=1n(12)n=12(12)−2
⇒∞∑n=1n(12)n=2
ANSWER : 2
0 Comments