SOLUTION :
∞∑n=1(−1)n+1[(n+1)2(n+1)n!+1(n+1)n!]
∞∑n=1(−1)n+1[n+1n!+1(n+1)n!]
∞∑n=1(−1)n+1[nn!+1n!+1(n+1)!]
∞∑n=1(−1)n+1[1(n−1)!+1n!+1(n+1)!]
∞∑n=1(−1)n+1(n−1)!+∞∑n=1(−1)n+1n!+∞∑n=1(−1)n+1(n+1)!
[1−1+12!−13!⋯]+[1−12!+13!+⋯]+[12!−13!+14!+⋯]
e−1−[−1+12!−13!+⋯⋅]+e−1
⇒e−1−[e−1−1]+e−1
⇒e−1−e−1+1+e−1
⇒1+e−1
⇒1+1e
ANSWER : 1+1e
0 Comments