Loading [MathJax]/jax/output/HTML-CSS/jax.js

Sum of series 1.


∞∑n=1(−1)n+1(n+1)2+1(n+1)n!

SOLUTION :


∞∑n=1(−1)n+1[(n+1)2(n+1)n!+1(n+1)n!]

∞∑n=1(−1)n+1[n+1n!+1(n+1)n!]

∞∑n=1(−1)n+1[nn!+1n!+1(n+1)!]

∞∑n=1(−1)n+1[1(n−1)!+1n!+1(n+1)!]

∞∑n=1(−1)n+1(n−1)!+∞∑n=1(−1)n+1n!+∞∑n=1(−1)n+1(n+1)!

[1−1+12!−13!⋯]+[1−12!+13!+⋯]+[12!−13!+14!+⋯]




e−1−[−1+12!−13!+⋯⋅]+e−1

⇒e−1−[e−1−1]+e−1

⇒e−1−e−1+1+e−1

⇒1+e−1

⇒1+1e

ANSWER : 1+1e

Post a Comment

0 Comments