∙|z|=0 if and only if z=0
∙|z1z2|=|z1||z2|
∙|z1z2|=|z1||z2| Provided |z2|≠0
∙Re(z1+z2)=Re(z1)+Re(z2)
∙Im(z1+z2)=Im(z1)+Im(z2)
∙|z1+z2|≤|z1|+|z2|
∙|z1|−|z2||≤|z1−z2∣∀z1,z2∈C
∙Re(z)=z+¯z2
∙Im(z)=z−¯z2i
∙z¯z=|z|2 or |¯z|
∙ Given that z=a+ib lets say P is a complex number , then we can represent this in complex plane as a point , the angle θ line form origin to point P makes with real axis is called argument or amplitude of given point P. can also be expressed as θ=arctan(ba)
The argument of a complex number is not unique, lets say if θ is argument then 2πk+θ is also argument of point P or z.
Principal Argument : When the argument of point z i.e θ lies between −π<θ≤π
, then that value of argument is called Principal Argument. denoted by Θ or Arg(z)
NOTE : Some authors prefer the range of Principal Argument in [0,2Ï€)
Trigonometric Functions
∙cosz=eiz+e−iz2
∙sinz=eiz−e−iz2
∙tanz=sinzcosz
∙sin2z+cos2z=1
∙2sinz1cosz2=sin(z1+z2)+sin(z1−z2)
∙2cosz1cosz2=cos(z1+z2)+cos(z1−z2)
∙2sinz1sinz2=−cos(z1+z2)+cos(z1−z2)
∙sinz=0 iff z=nπ(n=0,±1,…)
∙cosz=0 iff z=π2+nπ(n=0,±1,…)
Hyperbolic functions
∙coshz=ez+e−z2
∙sinhz=ez−e−z2
∙cosh2z−sinh2
∙sinh(iz)=isinz
∙cosh(iz)=cosz
∙coshz=0 iff z=(π2+nπ)i(n=0,±1,…)
∙sinhz=0 iff z=nπi(n=0,±1,…)
∙sinh0=0,coshθ=1,tanh0=0
∙cosh2z−sinh2z=1
∙1−tanh2z=sech2z
∙coth2z−1=cosech2z
∙sinh(−z)=−sinhz
∙cosh(−z)=coshz
∙tanh(−z)=−tanhz
∙sinh(z1±z2)=sinhz1coshz2±coshz1sinhz2
∙cosh(z1±z2)=coshz1coshz2±sinhz1sinhz2
∙tanh(z3±zy)=tanhz1±tanhz21±tanhz1tanhz2
∙siniz=isinhz
∙cosiz=coshz
∙taniz=itanhz
∙tanhiz=itanz
∙coshz=ez+e−z2
∙sinhz=ez−e−z2
∙cosh2z−sinh2
∙sinh(iz)=isinz
∙cosh(iz)=cosz
∙coshz=0 iff z=(π2+nπ)i(n=0,±1,…)
∙sinhz=0 iff z=nπi(n=0,±1,…)
∙sinh0=0,coshθ=1,tanh0=0
∙cosh2z−sinh2z=1
∙1−tanh2z=sech2z
∙coth2z−1=cosech2z
∙sinh(−z)=−sinhz
∙cosh(−z)=coshz
∙tanh(−z)=−tanhz
∙sinh(z1±z2)=sinhz1coshz2±coshz1sinhz2
∙cosh(z1±z2)=coshz1coshz2±sinhz1sinhz2
∙tanh(z3±zy)=tanhz1±tanhz21±tanhz1tanhz2
∙siniz=isinhz
∙cosiz=coshz
∙taniz=itanhz
∙tanhiz=itanz
0 Comments