Processing math: 100%

Some useful Identites of complex analysis





let z be a complex number i.e z=a+ib , z1=a1+ib1, z2=a2+ib2 and |z|=√a2+b2, then we have following properties

∙|z|=0 if and only if z=0

∙|z1z2|=|z1||z2|

∙|z1z2|=|z1||z2| Provided |z2|≠0

∙Re(z1+z2)=Re(z1)+Re(z2)

∙Im(z1+z2)=Im(z1)+Im(z2)

∙|z1+z2|≤|z1|+|z2|

∙|z1|−|z2||≤|z1−z2∣∀z1,z2∈C

∙Re(z)=z+¯z2

∙Im(z)=z−¯z2i

∙z¯z=|z|2 or |¯z|

∙ Given that z=a+ib lets say P is a complex number , then we can represent this in complex plane as a point , the angle θ line form origin to point P makes with real axis is called argument or amplitude of given point P. can also be expressed as θ=arctan(ba)

The argument of a complex number is not unique, lets  say if θ is argument then 2Ï€k+θ is also argument of  point P or z.

Principal Argument : When the argument of point z i.e θ lies between −π<θ≤π
, then that value of argument is called Principal Argument. denoted  by Θ or Arg(z)

NOTE : Some authors prefer the range of Principal Argument in [0,2Ï€)

Trigonometric Functions

∙cosz=eiz+e−iz2

∙sinz=eiz−e−iz2

∙tanz=sinzcosz

∙sin2z+cos2z=1

∙2sinz1cosz2=sin(z1+z2)+sin(z1−z2)

∙2cosz1cosz2=cos(z1+z2)+cos(z1−z2)

∙2sinz1sinz2=−cos(z1+z2)+cos(z1−z2)

∙sinz=0 iff z=nπ(n=0,±1,…)

∙cosz=0 iff z=π2+nπ(n=0,±1,…)

Hyperbolic functions

∙coshz=ez+e−z2

∙sinhz=ez−e−z2

∙cosh2z−sinh2

∙sinh(iz)=isinz

∙cosh(iz)=cosz

∙coshz=0 iff z=(Ï€2+nÏ€)i(n=0,±1,…)

∙sinhz=0 iff z=nÏ€i(n=0,±1,…)

∙sinh0=0,coshθ=1,tanh0=0

∙cosh2z−sinh2z=1

∙1−tanh2z=sech2z

∙coth2z−1=cosech2z

∙sinh(−z)=−sinhz

∙cosh(−z)=coshz

∙tanh(−z)=−tanhz

∙sinh(z1±z2)=sinhz1coshz2±coshz1sinhz2

∙cosh(z1±z2)=coshz1coshz2±sinhz1sinhz2

∙tanh(z3±zy)=tanhz1±tanhz21±tanhz1tanhz2

∙siniz=isinhz

∙cosiz=coshz

∙taniz=itanhz

∙tanhiz=itanz


Post a Comment

0 Comments