NOTE : In the following results we are going to use (a,b) as GCD of a and b, while [a,b] as LCM of a and b.Ï•(n) is Euler's totient function.
1). (nk)=n!k!(n−k)!
2). n∑k=0(nk)=2n
3). (a+b)n=n∑k=0(nk)an−kbk
4). Square of any integer is always of form 4kor4k+1
5). If a∣n and b∣n ,given (a,b)=1, then ab∣n
6). If (a,b)=1 and d∣b⇒(a,d)=1
7). Euclid Lemma: If a∣bc and (a,b)=1 then a∣c
8). (a,n)=(b,n)=1, Iff (ab,n)=1
9). An integer is called Square free If it is not divisible by the square of any integer >1. Example 5, 7, 10, 11...
10). Euclid's theorem : The number of primes are infinite.
11). Let pm is the mth prime, then pm≤22m−1.
12). Mersenne Numbers: The integers of the form Mm=2m−1,m≥1 are know as Mersenne Numbers.
13). If 2m−1 is a prime number then m will be a prime number.
14). Fermat's Number: Fn=22n+1,n≥0 are known as Fermat's number.
15). Fermat's Numbers are mutually co-prime i.e (Fn,Fm)=1.
16). Congruence is an equivalence relation.
17). lf n be a composite number then (n−1)!≡0(mod where n \neq 4.
18). If a \equiv b(\bmod n) and c \equiv f(\bmod n) then a+c \equiv b+f(\bmod n).
19). Let \;p\; be a prime number greater than 5 , then either p^{2}-1 or p^{2}+1 divisible by 10.
20). If a \equiv b(\bmod n) then a^{k} \equiv b^{k}(\bmod n) where k is a positive Integer.
21). m a \equiv m b(\bmod n) if and only if a \equiv b\left(\bmod \displaystyle \frac{n}{(m, n)}\right)
22). If m a \equiv m b(\bmod n) and given (m, n)=1 then a \equiv b(\bmod n)
23). For any positive Integer m. If a \equiv b(\bmod n) then ma=m b(\bmod mn)
24). If a b \equiv e f(\bmod m) and b \equiv f(\bmod m) given (b, m)=1 then a \equiv e(\bmod m)
25). Let a \equiv b \bmod (m) and d>0 divides a, b, m then \displaystyle \frac{a}{d} \equiv \displaystyle \frac{b}{d} \operatorname{mod}\left(\displaystyle \frac{m}{d}\right)
26). Let a \equiv b(\bmod m) and a \equiv b(\bmod n) then a \equiv b(\bmod mn) If (m, n)=1 otherwise a \equiv b(\bmod ((m, n)))
27). If c \mid m and a \equiv b(\bmod m), them a \equiv b(\operatorname{mod} c)
28). If a^{m} \equiv 1(\bmod n) for some positive integer m then (a, n)=1
29). If m and n are positive integers such that (m, n)=1 \text { then } \phi(m n)=\phi(m) \phi(n)
Where \phi(n) represent the number of elements that are coprime to n and less than n
30). Let p is some prime and n be some positive Integer then \phi\left(p^{k}\right)=p^{k}-p^{k-1} \text { or } p^{k}\left(1-\displaystyle \frac{1}{p}\right)
31). {\phi}(n)=n \displaystyle \prod_{p|n}\left(1-\displaystyle \frac{1}{p}\right) where n is any positive Integer n>1.
32). If n>2 the \phi(n) is always even.
33). Euler-Fermat theorem: a^{\phi(n)} \equiv 1(\bmod n) provided (a, n)=1.
34). Fermat's Little theorem: Given p is a prime and p\nmid a then a^{p-1} \equiv 1(\bmod p).
35). If p is prime then a^{p} \equiv a(\bmod p) for every integer a.
36). If n is odd and 2^{m-1}\not \equiv 1(\bmod m) then m must be a composite number.
37). Linear congruence: A Congruence of the form a x \equiv b(\bmod n) is Called Linear Congruence.
38). Let a x \equiv b(\bmod n) is a Linear congruence and given (a,n)=d, then linear congruences have solution Iff d \mid b. Also If d \mid b, then there are exactly d solutions modulo n.
39). Linear congruence a x\equiv b(\bmod n) with \operatorname(a, n)=1, always has a unique solution.
40). Chinese remainder theorem :
Given n_{1}, n_{2}, \cdots n_{m} are positive integers which are relatively prime in pairs, then for any a_{1}, a_{2}\cdots a_{m} \in \mathbb{Z}, the system of linear congruence
\begin{aligned}&x=a_{1}\left(\bmod n_{1}\right) \\&x=a_{2}\left(\bmod n_{2}\right)\\&\vdots\\&x=a_{m}\left(\bmod n_{m}\right)\end{aligned}
has Unique Solution modulo n, where
n=n_{1} \times n_{2} \times n_{3} \times n_{n} \cdots \times n_{m}.
41). Wilson's theorem: for any prime number p, we have (p-1)!\equiv-1(\bmod p)
42).Converse of Wilson's theorem: If n>1 an positive integer and \left.(n-1 \right)! \equiv -1(\bmod n), then n is prime.
43). Let p be a prime. Then x^{2} \equiv-1(\bmod p) has solution If and only If p=2 or p \equiv 1(\bmod 4).
44). If p is an odd prime, then \left[\left(\displaystyle \frac{p-1}{2}\right) !\right]^{2}+(-1)^{\displaystyle \frac{p-1}{2}} \equiv 0(\bmod p)
45). For every positive integer n>1d(m)=\prod_{p^{n}||m} \mid (n+1) where d(m) is the number of positive divisors of m.
46). \sigma(m)=\displaystyle \prod_{p^{n}|| m}\left(\displaystyle \frac{p^{n+1}-1}{p-1}\right), where p^{n}\mid m indicates p^{n}| m \quad But p^{n+1}\nmid m.
47). Multiplicative function: An Arithmetic function g , provided g is not identically zero , is said to be multiplicative function If
g(m \times n)=g(m) g(n) \text { provided }(m, n)=1.
48). Both d(m) and \sigma(m) are Multiplicative functions.
49). Möbius function: Denoted by \mu,\mu(m)= \begin{cases}1 & \text {If}\;\; m=1 \\ 0 & \text {otherwise} \\ (-1)^{k} & \text {If m is square free with k prime factors} \end{cases}
where p_{1}, p_{2}\cdots p_{n} are distinct primes.
50). For each positive Integer n \geq 1, we have
\displaystyle \sum_{d | m} \mu(d)=\left\{\begin{array}{lll}1 & \text { If } & m=1 \\0 & \text { If } & m>1\end{array}\right.
51). For any m \geq 1 we have \phi(m)=\displaystyle \sum_{d \mid m} \mu(d) \cdot \displaystyle \frac{m}{d}
52). Möbius inversion formula: Let \;f and g are two Arithmetic functions. Then for every integer \mathrm{m}. If f(m)=\displaystyle \sum_{d| m} g(d)
than g(m)=\displaystyle \sum_{d \mid m} \mu(d) f\left(\displaystyle \frac{m}{d}\right)
53). Let p is a prime number. Then Largest exponent a such that p^{a} \mid m ! is
a=\displaystyle \sum_{i=1}^{\infty}\left[\displaystyle \frac{m}{p^{i}}\right]
where m is positive integer, and \;\left[ \cdots \right]\; is greatest integer function.
54). For any positive integer m \geq 1m=\displaystyle \sum_{d \mid m} \phi(d)
55). \displaystyle \phi(m)\phi(n) =\frac{\phi(mn)\times \phi(d)}{d} , where m and n are positive Integers.
0 Comments