Solving exponential and logarithmic problems



The inverse of the exponential function \(g(x)=a^{x}\) is called  logarithm function, and is denoted \(g^{-1}(x)=\log _{a}(x)\) We read ' \(\log _{a}(x)\) ' as ' \(\log\) base \(a\) of \(x\).'

 \(\log _{10}(x)\)  is usually written as \(\log (x)\). The natural logarithm of a real number \(x\) is \(\log _{e}(x)\) and is usually written as \(\ln (x)\).

In this post we are going to solve questions related to logarithm using its properties ( click here to check its properties)

1) QUESTION - Using property  \(\;\; a^{c}=b\;\; \)  if and only if \(\;\;\log_{a}b=c\;\;\)Write the following exponential form in logarithm.

i) \(\;2^4=16\)

SOLUTION- 
\(2^4=16\)   

\(\Rightarrow \log_{2}16=4\)


ii) \(\;5^{-3} = \displaystyle \frac{1}{125}\)

SOLUTION-
 \(\;5^{-3} = \displaystyle \frac{1}{125}\)

\(\Rightarrow \displaystyle \log_{5} \frac{1}{125} = -3\)

iii) \(\;10^{-2} = 0.01 \)

SOLUTION-
 \(\;10^{-2} =0.01\)

\(\Rightarrow \displaystyle \log_{10}0.01 = -2\)

iv) \(\;8^{2/3} = 4 \)

SOLUTION-
 \(\;8^{2/3} =4\)

\(\Rightarrow \displaystyle \log_{8} 4= \frac{2}{3}\)

Now we will check how to find the value of a given Logarithm form .

i) \(\;\log_{3} 81 \)

SOLUTION-
 \(\;\log_{3}81\)

let say we don't know its value, take it \(\;x\)

\(\Rightarrow \log_{3} 81= x \)

From above we know that \(\;\; \log_{a} b = n  \;\; \Rightarrow a^n =b\;\) by using this above can be written as

\(\Rightarrow  3^{x}=81\)

now we have to think what power of 3 should we raise so that it will give 81, and  the answer is 4

\(\Rightarrow 3^{x} =3^{4}\)

\(\Rightarrow x=4\)


There is also an alternate way , but for that first check these indenitites (CLICK HERE).

ANOTHER WAY-   
\(\log_{3} 81 =  \log_{3} (3^4)\)

\(\Rightarrow \;\;\;\; \log_{3} 81 = 4 \log_{3} (3)\cdots\;\;(1)\)

Because we have identity that \(\;\; \log_{a}(b)^n = n \log_{a} (b)\)

so form (1) we have

\(\log_{3} 81 = 4 \log_{3} (3)\cdots\)

again using property of Logarithm that \(\;\log_{a}(a) = 1\;\;\) we will get 

\(\log_{3} 81 = 4(1)\)

ANSWER  - 4



ii).  Evaluate \(\; \log_{\frac{1}{5}} (625)\)

SOLUTION- 
Lets say its value is \(\;x\;\)

then we will have  \(\; \log_{\frac{1}{5}} (625) =x\)

 \(\Rightarrow  \; \displaystyle \left(\displaystyle \frac{1}{5}\right)^{x}=625\)

So now we have to look for \(\;x\;\) which satisfies above condition.


\(\; \displaystyle \left(\frac{1}{5}\right)^{x}=625\)

\(\; \displaystyle \left(\displaystyle \frac{1}{5}\right)^{x}=  5^4\)

\(\; \displaystyle \left(\frac{1}{5}\right)^{x}=  \left(\frac{1}{5}\right)^{-4}\)

from here this is easy to say that \(\;x=-4\)

ANSWER - \(\;-4\;\)



iii). \(\; \displaystyle  \log \left (\frac{1}{1000} \right)\)

SOLUTION- Whenever the base of  logarithm is not given consider that its base is 10. 

NOTE - Generally books use \(\; \log \;\) instead of \(\; \log_{10}\;\) and  \(\; \ln\;\) for \(\; \log_{e}\;\).

\(\; \displaystyle  \log \left (\frac{1}{1000} \right) =x\)

\( \Rightarrow \displaystyle \; 10^{x} = \left (\frac{1}{1000} \right)\)
or 
\(\Rightarrow \displaystyle\; 10^{x} = \left (\frac{1}{10} \right)^3\)

\(\Rightarrow \displaystyle \; 10^{x} = \left (\frac{10}{1} \right)^{-3}\)

\(\Rightarrow \displaystyle \; 10^{x} = \left (10^{-3}\right)\)

\(\Rightarrow \;x = -3\;\)


SECOND WAY 

Given that \(\; \displaystyle \log \left (\frac{1}{1000} \right) \cdots \;\;\;\;(2) \)

 we will use identity \(\;\log_{a} \left(\displaystyle \frac{b}{c}\right) =\log_{a}(b) -\log_{a}(c) \) 

 so using above property in (2),

we will get \(\; \displaystyle \log \left (\frac{1}{1000} \right) =\log(1) -\log(1000) \) 

 \(\Rightarrow \displaystyle \log \left (\frac{1}{1000} \right) =0 -\log(10)^{3} \) 

 using property that \(\;\log_{a} (b)^n = n\log_{a} (b)\) 

 \(\Rightarrow \displaystyle \log \left (\frac{1}{1000} \right) = -3\log(10) \) 

 using identity that \(\log_{a} (a)=1\;\; \text{we can write } \;\log(10) =1\) 

 \(\Rightarrow \displaystyle \log \left (\frac{1}{1000} \right) =-3(1) \)

ANSWER : -3 



iv ) \(\; \log \left( \sqrt[3]{10^{5}}\right)\)

SOLUTION

\(\; \log \left( \sqrt[3]{10^{5}}\right)= \; \log \left( 10^{5/3}\right) \)

\(\Rightarrow \; \displaystyle \frac{5}{3}\log \left( 10\right)\)

\(\Rightarrow \; \displaystyle \frac{5}{3}\)

ANSWER : \(\;\displaystyle \frac{5}{3}\)




v).
\(\displaystyle \; \log_{2}\left( 3^{-\log_{3}(2)}\right)\)

SOLUTION: 
 
\(\displaystyle \log_{2} \left( 3^{-\log_{3}(2)}\right) =\displaystyle \; \log_{2}\left( 3^{\log_{3}(2)^{-1}}\right) \)

\(\Rightarrow \displaystyle \; \log_{2}\left( 3^{\log_{3}\left(\frac{1}{2}\right)}\right)\)

We have a property of logrithm that, \(\; a^{\log_{a} b } =b\;\) we will use this is above

\(\Rightarrow \displaystyle \; \log_{2}\left(\frac{1}{2}\right)\)

\(\Rightarrow \displaystyle \; \log_{2}\left(\frac{1}{2}\right)\)

\(\Rightarrow \displaystyle \; \log_{2}\left({2}^{-1}\right)\)

\(\;=-1\)

ANSWER : -1

Post a Comment

0 Comments