Loading [MathJax]/jax/output/HTML-CSS/jax.js

Important Formulas For Integration.





∙∫xndx=xn+1n+1+c wheren≠−1

∙∫cosxdx=sinx+c

∙∫sinxdx=−cosx+c

∙∫secxtanxdx=secx+c

∙∫sec2xdx=tanx+c

∙∫csc2xdx=−cotx+c

∙∫cscxcotxdx=−cscx+c

∙∫dx√1−x2=sin−1x+c

∙∫dx√1−x2=−cos−1x+c

∙∫dx1+x2=tan−1x+c

∙∫dxx√x2−1=−csc−1x+c

∙∫dx1+x2=−cot−1x+c

∙∫dxx√x2−1=sec−1x+c

∙∫axdx=axlna+c

∙∫eaxdx=eaxa+c

∙∫1xdx=ln|x|+c

∙∫tanxdx=ln|secx|+c

∙∫cotxdx=ln|sinx|+c

∙∫secxdx=ln|secx+tanx|+c

∙∫cscxdx=ln|cscx−cotx|+c

∙∫dxx2−a2=12aln|x−ax+a|+c

∙∫dxa2−x2=12aln|a+xa−x|+c

∙∫dxa2+x2=1atan−1xa+c

∙∫dx√x2−a2=ln|x+√x2−a2|+c

∙∫dx√a2−x2=sin−1xa+c

∙∫dx√x2+a2=ln|x+√x2+a2|+c

∙∫√x2−a2dx=x2√x2−a2−a22ln|x+√x2−a2|+c




∙∫√x2+a2dx=x2√x2+a2+a22ln|x+√x2+a2|+c




∙∫√a2−x2dx=x2√a2−x2+a22sin−1xa+c




∙∫arcsinxdx=xarcsinx+√1−x2+C

∙∫arccosxdx=xarccosx−√1−x2+C

∙∫arctanxdx=xarctanx−12ln(x2+1)+C

∙∫arccotxdx=xarccotx+12ln(x2+1)+C

Integrals of Hyperbolic Functions

∙∫sinhxdx=coshx+C

∙∫coshxdx=sinhx+C

∙∫tanhxdx=lncoshx+C

∙∫cothxdx=ln|sinhx|+C

∙∫sech2xdx=tanhx+C

∙∫csch2xdx=−cothx+C

∙∫sechxtanhxdx=−sechx+C

∙∫xnlnmxdx=xn+1lnmxn+1−mn+1∫xnlnm−1xdx




∙∫lnmxxndx=−lnmx(n−1)xn−1+mn−1∫lnm−1xxndx,n≠1




∙∫lnnxdx=xlnnx−n∫lnn−1xdx

∙∫xmsinhxdx=xmcoshx−m∫xm−1coshxdx

∙∫xmcoshxdx=xmsinhx−m∫xm−1sinhxdx

∙∫xmsinxdx=−xmcosx+m∫xm−1cosxdx

∙∫xmcosxdx=xmsinx−m∫xm−1sinxdx



INTEGRALS BY PARTIAL FRACTIONS

 âˆ™âˆ«px+q(x−a)(x−b)=Ax−a+Bx−b such that a≠b

∙∫px+q(x−a)2=Ax−a+B(x−a)2

∙∫px2+qx+r(x−a)(x−b)(x−c)=Ax−a+B(x−a)+Cx−c




∙∫px2+qx+r(x−a)2(x−b)=Ax−a+B(x−a)2+Cx−b




∙∫px2+qx+r(x−a)(x2+bx+c)=Ax−a+Bx+C(x2+bx+c)




NOTE - Here Given x2+bx+c doesn't have any further linear factors

INTEGRATION BY PARTS FORMULAS

∫f(x)g(x)dx=f(x)∫g(x)dx−∫(f′(x)∫g(x)dx)dx




RULE-Here we have to decide which is first function for that here is a rule named as ILATE Where

I→ Inverse trigonemtry functions

L→ Logarithmic functions

A→ Arithmatic functions

T→ Trigonometric functions

E→ Exponential functions

FORMULAS FOR DEFINITE INTEGRATION

∙∫βαf(x)dx=∫βαf(t)dt

Here it explain that we can change the variable

∙∫bαf(x)dx=−∫αbf(x)dx

In above this tells us that you can flip limits but integral will be negative value of original one.

∙∫βαf(x)dx=∫γαf(x)dx+∫βγf(x)dx

In above it tells us that we can break the limits.

 49.)∫βαf(x)dx=∫βαf(α+β−x)dx

∙∫α0f(x)dx=∫α0f(α−x)dx

∙∫2α0f(x)dx=∫α0f(x)dx+∫α0f(2α−x)dx




∙∫2α0f(x)dx={2∫α0f(x)dx if f(2α−x)=f(x)0 if f(2α−x)=−f(x)




∙∫α−αf(x)dx={2∫α0f(x)dx if f(−x)=f(x)0 if f(−x)=−f(x)



Check Other Important Formulas - CLICK HERE


Post a Comment

0 Comments