∙∫cosxdx=sinx+c
∙∫sinxdx=−cosx+c
∙∫secxtanxdx=secx+c
∙∫sec2xdx=tanx+c
∙∫csc2xdx=−cotx+c
∙∫cscxcotxdx=−cscx+c
∙∫dx√1−x2=sin−1x+c
∙∫dx√1−x2=−cos−1x+c
∙∫dx1+x2=tan−1x+c
∙∫dxx√x2−1=−csc−1x+c
∙∫dx1+x2=−cot−1x+c
∙∫dxx√x2−1=sec−1x+c
∙∫axdx=axlna+c
∙∫eaxdx=eaxa+c
∙∫1xdx=ln|x|+c
∙∫tanxdx=ln|secx|+c
∙∫cotxdx=ln|sinx|+c
∙∫secxdx=ln|secx+tanx|+c
∙∫cscxdx=ln|cscx−cotx|+c
∙∫dxx2−a2=12aln|x−ax+a|+c
∙∫dxa2−x2=12aln|a+xa−x|+c
∙∫dxa2+x2=1atan−1xa+c
∙∫dx√x2−a2=ln|x+√x2−a2|+c
∙∫dx√a2−x2=sin−1xa+c
∙∫dx√x2+a2=ln|x+√x2+a2|+c
∙∫√x2−a2dx=x2√x2−a2−a22ln|x+√x2−a2|+c
∙∫√x2+a2dx=x2√x2+a2+a22ln|x+√x2+a2|+c
∙∫√a2−x2dx=x2√a2−x2+a22sin−1xa+c
∙∫arcsinxdx=xarcsinx+√1−x2+C
∙∫arccosxdx=xarccosx−√1−x2+C
∙∫arctanxdx=xarctanx−12ln(x2+1)+C
∙∫arccotxdx=xarccotx+12ln(x2+1)+C
Integrals of Hyperbolic Functions
∙∫sinhxdx=coshx+C
∙∫coshxdx=sinhx+C
∙∫tanhxdx=lncoshx+C
∙∫cothxdx=ln|sinhx|+C
∙∫sech2xdx=tanhx+C
∙∫csch2xdx=−cothx+C
∙∫sechxtanhxdx=−sechx+C
∙∫xnlnmxdx=xn+1lnmxn+1−mn+1∫xnlnm−1xdx
∙∫lnmxxndx=−lnmx(n−1)xn−1+mn−1∫lnm−1xxndx,n≠1
∙∫lnnxdx=xlnnx−n∫lnn−1xdx
∙∫xmsinhxdx=xmcoshx−m∫xm−1coshxdx
∙∫xmcoshxdx=xmsinhx−m∫xm−1sinhxdx
∙∫xmsinxdx=−xmcosx+m∫xm−1cosxdx
∙∫xmcosxdx=xmsinx−m∫xm−1sinxdx
INTEGRALS BY PARTIAL FRACTIONS
∙∫px+q(x−a)(x−b)=Ax−a+Bx−b such that a≠b
∙∫px+q(x−a)2=Ax−a+B(x−a)2
∙∫px2+qx+r(x−a)(x−b)(x−c)=Ax−a+B(x−a)+Cx−c
∙∫px2+qx+r(x−a)2(x−b)=Ax−a+B(x−a)2+Cx−b
∙∫px2+qx+r(x−a)(x2+bx+c)=Ax−a+Bx+C(x2+bx+c)
NOTE - Here Given x2+bx+c doesn't have any further linear factors
INTEGRATION BY PARTS FORMULAS
∫f(x)g(x)dx=f(x)∫g(x)dx−∫(f′(x)∫g(x)dx)dx
RULE-Here we have to decide which is first function for that here is a rule named as ILATE Where
I→ Inverse trigonemtry functions
L→ Logarithmic functions
A→ Arithmatic functions
T→ Trigonometric functions
E→ Exponential functions
FORMULAS FOR DEFINITE INTEGRATION
∙∫βαf(x)dx=∫βαf(t)dt
Here it explain that we can change the variable
∙∫bαf(x)dx=−∫αbf(x)dx
In above this tells us that you can flip limits but integral will be negative value of original one.
∙∫βαf(x)dx=∫γαf(x)dx+∫βγf(x)dx
In above it tells us that we can break the limits.
I→ Inverse trigonemtry functions
L→ Logarithmic functions
A→ Arithmatic functions
T→ Trigonometric functions
E→ Exponential functions
FORMULAS FOR DEFINITE INTEGRATION
∙∫βαf(x)dx=∫βαf(t)dt
Here it explain that we can change the variable
∙∫bαf(x)dx=−∫αbf(x)dx
In above this tells us that you can flip limits but integral will be negative value of original one.
∙∫βαf(x)dx=∫γαf(x)dx+∫βγf(x)dx
In above it tells us that we can break the limits.
49.)∫βαf(x)dx=∫βαf(α+β−x)dx
∙∫α0f(x)dx=∫α0f(α−x)dx
∙∫α0f(x)dx=∫α0f(α−x)dx
∙∫2α0f(x)dx=∫α0f(x)dx+∫α0f(2α−x)dx
∙∫2α0f(x)dx={2∫α0f(x)dx if f(2α−x)=f(x)0 if f(2α−x)=−f(x)
∙∫α−αf(x)dx={2∫α0f(x)dx if f(−x)=f(x)0 if f(−x)=−f(x)
Check Other Important Formulas - CLICK HERE
0 Comments