Loading [MathJax]/jax/output/HTML-CSS/jax.js

P.S.E.B 12th one marks question solutions






1).Iff(x)=logxandg(x)=exfindfog?
SOLUTION-fog=f(g(x))=f(ex)(∵g(x)=ex)
⇒fog=log(ex)=x(∵ln(ex)=x)
⇒x is right answer

2).Ais a square matrix of order 3×3 \color{Black} \text{and}\;|A|=5\;\;\;\; \text{then find}\;\;    |adj(A)|
SOLUTION- |adjA|=|A|n−1Where n is order of matrix ⇒|adjA|=(5)2=25 ⇒so 25 is answer
3)Principle value ofsin−1(12)
SOLUTION-\color{Black} \text{we know that}   \sin(\frac{\pi}{6})=\frac{1}{2} ⇒sin−1(12)=sin−1(sin(Ï€6) ⇒sin−1(sin(Ï€6)=Ï€6 ⇒So the answer is Ï€6
4)iff(x)={x2−9x−3 if x≠3m if x=3 \color{Black}  \text{is continuous at 3 then find m}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;
SOLUTION- ⇒limx→3−x2−9(x−3)=limn→3−\cancel(x−3)(x+3)\cancel(x−3) ⇒limx→3−(x+3)=3+3=6...(1) \color{Black} \text{ If function is continous at 'a' then } limx→a−f(x)=limx→a+f(x)=f(a) ⇒f(3)=limx→3−(x+3) \color{Black}\text{ we have f(3)=m given in question} ⇒m=3+3=6 \color{Black}  \text{so} \;\;6=m
5).ify=log(tanx)thendydxis
SOLUTION\color{Black} \text{we know that} \;\;\frac{d}{dx}\log x=\frac{1}{x}\times \frac{d}{dx}.x ⇒ddxlog(tanx)=1tanx×ddxtanx ⇒1tanx×ddxtanx ⇒1tanx×sec2x=sec2xtanx \color{Black} \text{Answer is }\;\;\frac{\sec^2 x}{\tan x}
6).Find∫π/20sin3/2xsin3/2x+cos3/2x
SOLUTION \color{Black} \text{We have a formula} ∫a0f(x)dx=∫a0f(a−x)dx \color{Black} \text{we will use this formula in question} \color{Black} \text{Let}\;\; I=\int_{0}^{\pi/2}\frac{\sin^{3/2} x}{\sin^{3/2} x+\cos^{3/2} x} \; \color{Black} \text{(Now according to formula)} =∫π/20sin3/2(Ï€2−x)sin3/2(Ï€2−x))+cos3/2(Ï€2−x)..1) ⇒I=∫π/20cos3/2(x)cos3/2x+sin3/2x......2) Add (1) and (2) we get 2I=∫π/20sin3/2xsin3/2x+cos3/2x+∫π/20cos3/2(x)cos3/2x+sin3/2x 2I=∫π/20sin3/2x+cos3/2(x)sin3/2x+cos3/2x 2I=∫π/20\bcancelsin3/2x+cos3/2x\bcancelsin3/2x+cos3/2x=∫π/201dx ⇒2I=|x|Ï€/20=Ï€2 ⇒2I=Ï€2 \color{Black} \text{Answer is }\;\; \frac{\pi}{4}
7).The degree of differential equation d2ydx2+(dydx)3+y=0
SOLUTION \color{Black}\text{(we know that degree of a given differential} \color{black}\text{equation is power of highest order derivative)} \color{Black}\text{Here maximum derivative is }\;\;\frac{d^2y}{dx^2} \;\;\;\text{and it} \color{black}\text{has power 1} \color{Black}\text{Answer is 1}
8).If→a=2ˆi+3ˆj−ˆkthen find|→a|
SOLUTION |→a|=√22+32+(−1)2=√4+9+1=√14 \color{Black}\text{Answer is}\;\sqrt{14}
9).Find the direction ratios of normal \color{Black} \text{to the plane which is parallel to} 3x+y−z=11
SOLUTION- \color{Black} \text{For a plane}\; ax+by+cz=d \color{Black} \text{Direction ratios of normal are }\;\;a,b,c \color{Black} \Rightarrow \color{\black}\text{So  the direction ratios of  normal is } ⟨3,1−1⟩

NOTE**-PLEASE ROTATE THE SCREEN IN CASE OF QUESTION IS CUT OFF FROM LEFT SIDE

.

Post a Comment

0 Comments