1).Iff(x)=logxandg(x)=exfindfog?
SOLUTION-fog=f(g(x))=f(ex)(∵g(x)=ex)⇒fog=log(ex)=x(∵ln(ex)=x)
⇒x is right answer
2).Ais a square matrix of order 3×3 \color{Black} \text{and}\;|A|=5\;\;\;\; \text{then find}\;\;
|adj(A)|
SOLUTION- |adjA|=|A|n−1Where n is order of matrix
⇒|adjA|=(5)2=25
⇒so 25 is answer 3)Principle value ofsin−1(12)
SOLUTION-\color{Black} \text{we know that}
\sin(\frac{\pi}{6})=\frac{1}{2} ⇒sin−1(12)=sin−1(sin(π6) ⇒sin−1(sin(π6)=π6 ⇒So the answer is π64)iff(x)={x2−9x−3 if x≠3m if x=3 \color{Black} \text{is continuous at 3 then find m}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;
SOLUTION-
⇒limx→3−x2−9(x−3)=limn→3−\cancel(x−3)(x+3)\cancel(x−3)
⇒limx→3−(x+3)=3+3=6...(1)
\color{Black} \text{ If function is continous at 'a' then } limx→a−f(x)=limx→a+f(x)=f(a)
⇒f(3)=limx→3−(x+3)
\color{Black}\text{ we have f(3)=m given in question}
⇒m=3+3=6
\color{Black} \text{so} \;\;6=m5).ify=log(tanx)thendydxis
SOLUTION\color{Black} \text{we know that} \;\;\frac{d}{dx}\log x=\frac{1}{x}\times \frac{d}{dx}.x
⇒ddxlog(tanx)=1tanx×ddxtanx
⇒1tanx×ddxtanx
⇒1tanx×sec2x=sec2xtanx
\color{Black} \text{Answer is }\;\;\frac{\sec^2 x}{\tan x}6).Find∫π/20sin3/2xsin3/2x+cos3/2x
SOLUTION
\color{Black} \text{We have a formula}
∫a0f(x)dx=∫a0f(a−x)dx
\color{Black} \text{we will use this formula in question}
\color{Black} \text{Let}\;\; I=\int_{0}^{\pi/2}\frac{\sin^{3/2} x}{\sin^{3/2} x+\cos^{3/2} x} \;
\color{Black} \text{(Now according to formula)}
=∫π/20sin3/2(π2−x)sin3/2(π2−x))+cos3/2(π2−x)..1)
⇒I=∫π/20cos3/2(x)cos3/2x+sin3/2x......2)
Add (1) and (2) we get
2I=∫π/20sin3/2xsin3/2x+cos3/2x+∫π/20cos3/2(x)cos3/2x+sin3/2x
2I=∫π/20sin3/2x+cos3/2(x)sin3/2x+cos3/2x
2I=∫π/20\bcancelsin3/2x+cos3/2x\bcancelsin3/2x+cos3/2x=∫π/201dx
⇒2I=|x|π/20=π2
⇒2I=π2
\color{Black} \text{Answer is }\;\; \frac{\pi}{4}
7).The degree of differential equation
d2ydx2+(dydx)3+y=0
SOLUTION
\color{Black}\text{(we know that degree of a given differential} \color{black}\text{equation is power of highest order derivative)}
\color{Black}\text{Here maximum derivative is }\;\;\frac{d^2y}{dx^2} \;\;\;\text{and it} \color{black}\text{has power 1}
\color{Black}\text{Answer is 1}8).If→a=2ˆi+3ˆj−ˆkthen find|→a|
SOLUTION
|→a|=√22+32+(−1)2=√4+9+1=√14
\color{Black}\text{Answer is}\;\sqrt{14}9).Find the direction ratios of normal \color{Black} \text{to the plane which is parallel to}
3x+y−z=11
SOLUTION-
\color{Black} \text{For a plane}\; ax+by+cz=d
\color{Black} \text{Direction ratios of normal are }\;\;a,b,c
\color{Black} \Rightarrow \color{\black}\text{So the direction ratios of normal is }
⟨3,1−1⟩
0 Comments